易拉罐电视天线的手工制作 - OpenHW天线技术(2)
(纸艺手工制作大全图片)

人气

易拉罐电视天线的手工制作 - OpenHW天线技术2 智能天线简介  随着移动通信的迅速发展,越来越多的业务将通过无线电波的方式来进行,有限的频谱资源面对着越来越高的容量需求的压力。对于第二代移动通信系统GSM,在我国的一些大城市已经出现了容量供应困难的现象,小区蜂窝的半径已经很小,而目前作为应用研究重点的3G以及它的业务模式无疑将对网络容量有更高的要求。高速的数据业务将作为3G网络服务的一个主要特点,这使得网络数据流量尤其是下行方向上将有明显的提高。因此,为了在3G系统中实现与第二代系统明显的差别服务,充分体现3G系统在业务能力上的优势,网络容量将是网络的运营者必须重点考虑的问题。就目前的情况而言,智能天线技术将是提高网络容量最有效的方法之一,尤其对于3G中以自干扰为主要干扰形式的通信系统。  天线方向图的增益特性能够根据信号情况实时进行自适应变化的天线称为智能天线。与普通天线以射频部分为主不同,智能天线包括射频部分以及信号处理和控制部分。同时,由于终端在尺寸和成本上的限制,所以目前对于智能天线的研究主要集中在基站侧,我们下面讨论的智能天线也指的是在基站上的应用。  目前,基站普遍使用的是全向天线或者扇区天线,这些天线具有固定的天线方向图形式,而智能天线将具有根据信号情况实时变化的方向图特性(见图1)。  如图1所示,在使用扇区天线的系统中,对于在同一扇区中的终端,基站使用相同的方向图特性进行通信(纸艺手工制作大全图片),这时系统依靠频率、时间和码字的不同来避免相互间的干扰。而在使用智能天线的系统中,系统将能够以更小的刻度区别用户位置的不同,并且形成有针对性的方向图,由此最大化有用信号、最小化干扰信号,在频率、时间和码字的基础上,提高了系统从空间上区别用户的能力。这相当于在频率和时间的基础上扩展了一个新的维度,能够很大程度地提高系统的容量以及与之相关的其它方面的能力(例如覆盖、获取用户位置信息等)。3 智能天线的工作原理与发展情况  天线的方向图表示的是空间角度与天线增益的关系,对于全向天线来说,它的方向图是一个圆;对于阵列天线,可以通过调整阵列中各个元素的加权参数来形成更具方向性的天线方向图,形成主瓣方向具有较大增益,而其它副瓣方向增益较小的形式。智能天线正是一种能够根据通信的情况,实时地调整阵列天线各元素的参数,形成自适应的方向图的设备。这种方向图通常以最大限度地放大有用信号、抑制干扰信号为目的,例如将大增益的主瓣对准有用信号,而在其它方向的干扰信号上使用小增益的副瓣。图2为一个智能天线结构的示例图。  智能天线包括射频天线阵列部分和信号处理部分,其中信号处理部分根据得到的关于通信情况的信息,实时地控制天线阵列的接收和发送特性。这些信息可能是接收到的无线信号的情况;在使用闭环反馈的形式时,也可能是通信对端关于发送信号接收情况的反馈信息。

易拉罐电视天线的手工制作 - OpenHW天线技术  由于移动通信中无线信号的复杂性,所以这种根据通信情况实时调整天线特性的工作方式对算法的准确程度、运算量以及能够实时完成运算的硬件设备都有很高的要求。这决定了智能天线的发展是一个分阶段的、逐步完善的过程,目前通常将这种过程分为以下三个阶段:  ●第一阶段:开关波束转换。在天线端预先定义一些波瓣较窄的波束,根据信号的来波方向实时确定发送和接收所使用的波束,达到将最大天线增益方向对准有效信号,降低发送和接收过程中的干扰的目的。这种方法位于扇区天线和智能天线之间,实现运算较为简单,但是性能也比较有限。  ●第二阶段:自适应(最强)信号方向。根据接收信号的最强到达方向,自适应地调整天线阵列的参数,形成对准该方向的接收和发送天线方向图。这是动态自适应波束成形的最初阶段,性能优于开关波束转换,同时算法也较为复杂,但是还未达到最优的状态。  ●第三阶段:自适应最佳通信方式。根据得到的通信情况的信息,实时地调整天线阵列的参数,自适应地形成最大化有用信号、最小化干扰信号的天线特性,保持最佳的射频通信方式。这是理想的智能天线的工作方式,能够很大程度地提高系统无线频谱的利用率。但是其算法复杂,实时运算量大,同时还需要进一步探寻各种实际情况下的最佳算法。  目前,对于智能天线的应用主要集中在第二阶段附近,并且由于移动通信的迅速发展,使得智能天线技术在包括3G的应用中受到广泛的重视,解决智能天线在实际应用中的各种问题,以及寻求更加“智能”的自适应算法和实现方案是目前工作的重点和主要内容。下面我们讨论智能天线技术在3G各个通信标准中的应用前景,以及相关的试验参考结果。

收藏: 1 次
热点文章随机推荐